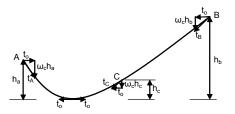

# LÍNEAS DE TRANSMISIÓN

CÁLCULO MECÁNICO DEL CONDUCTOR y CABLE DE GUARDA Ing. Carlos Huayllasco Montalva

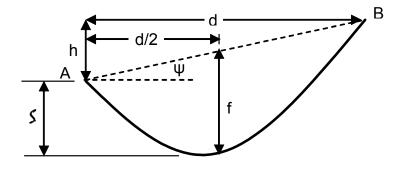


#### PROPIEDADES DE LA CATENARIA

La componente horizontal del tiro del conductor  $(T_0)$  es igual para todos los puntos de la curva, y su valor es el de la tensión en el punto más bajo de la catenaria




#### PROPIEDADES DE LA CATENARIA


Para un conductor con un Tiro de Rotura de 2.000 kg y un Coeficiente de Seguridad de 2

El Tiro Máximo será = 2 000 / 2 = 1 000 kg

El Tiro Máximo será en el punto B: TB < 1 000 kg







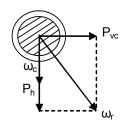
## CÁLCULO DE LA FLECHA

$$f = \frac{Kx\omega_r x d^2}{8xt_o x Cos \psi} = \frac{Kx\omega_r x d^2}{8xt_o} \sqrt{1 + \left(\frac{h}{d}\right)^2}$$

K = Coeficiente de Schmidt y Rosental

 $\omega_r$  = peso unitario resultante

d = vano


t<sub>o</sub> = tiro horizontal

 $\dot{\text{C}}$ os $\psi$  = coseno del arcotangente entre desnivel y vano

h = desnivel

$$K = 1 + \left[ \frac{1}{48} \left( \frac{\omega_r x d}{To} \right)^2 \right]$$

#### CÁLCULO DEL PESO UNITARIO RESULTANTE



$$\omega_r = \sqrt{\left(\omega_c + P_h\right)^2 + P_{VC}^2}$$

 $\omega_r$  = peso unitario resultante (kg/m)

 $\omega_c$  = peso unitario del conductor (propio del conductor) (kg/m)

P<sub>h</sub> = peso unitario de eventual costra de hielo (kg/m)

P<sub>VC</sub> = presión unitaria de viento sobre los conductores (kg/m)

## CÁLCULO DEL PESO DE EVENTUAL COSTRA DE HIELO

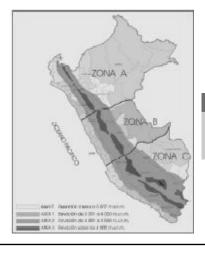
$$P_h = 0.0029 \left( i^2 x \varphi_c \right)$$

P<sub>h</sub> = peso unitario de eventual costra de hielo (kg/m)

i = espesor de eventual costra de hielo (mm)

 $\phi_{\rm C}$  = diámetro del conductor

## CÁLCULO DE LA PRESIÓN DEL VIENTO


#### Cargas debidas al viento

$$P_{v} = KxV^{2}xSfxA$$

P<sub>v</sub> = Carga en Newton K = 0,613 hasta 3 000 msnm, 0,455 para más de 3 000 msnm V = Velocidad del viento en m/s Sf = Factor de forma A = Área proyectada en m<sup>2</sup>

#### CÁLCULO DE LA PRESIÓN DEL VIENTO

#### Cargas debidas al viento



| Zona de Carga        | A                | B         | C         |
|----------------------|------------------|-----------|-----------|
|                      | Ligera           | Regular   | Fuerte    |
| Velocidad horizontal | 19,5 m/s         | 22,2 m/s  | 25 m/s    |
| del viento           | (70 km/h)        | (80 km/h) | (90 km/h) |
| Temperatum           | 20 °C            | 15 °C     | 10 °C     |
|                      | , and the second |           | CNIE      |

CNE

#### CÁLCULO DE LA PRESIÓN DEL VIENTO

#### Viento, Hielo y Temperatura

| Zona de carga                                                                                        | Área 0<br>elevación<br>menor de 3 000<br>m.s.n.m. | Área 1<br>elevación<br>3 000-4 000<br>m.s.n.m. | Área 2<br>elevación<br>4 001-4 500<br>m.s.n.m. | Área 3<br>elevación<br>a partir de<br>4 500 m.s.n.m. |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------------|
| Caso de sólo viento<br>Velocidad horizontal del<br>viento<br>Temperatura °C                          | 26 m/s<br>(94 km/h)<br>10 °C                      | 29 m/s<br>(104 km/h)<br>5 °C                   | 31,5 m/s<br>(113 km/h)<br>0 °C                 | 33,5 m/s<br>(120 km/h)<br>-5 °C                      |
| Caso de sólo hielo<br>Grosor radial del hielo mm<br>Temperatura                                      | No hay                                            | 6 mm<br>0 °C                                   | 25 mm<br>-5 °C                                 | 50 mm<br>-10 °C                                      |
| Caso combinado de hielo y<br>viento<br>Grosor radial del hielo<br>Velocidad horizontal del<br>viento | No hay<br>14 m/s<br>(50 km/h)                     | 3 mm<br>14,5 m/s<br>(52 km/h)                  | 12 mm<br>15,5 m/s<br>(56 km/h)                 | 25 mm<br>17 m/s<br>(61 km/h)                         |
| Temperatura                                                                                          | 5 °C                                              | 0°C                                            | -5 °C                                          | -10 °C                                               |

CNE

## CÁLCULO DE LA PRESIÓN DEL VIENTO

Cuando se diseñan soportes relativamente altos de líneas, se debe corregir la velocidad del viento medida en las estaciones meteorológicas

$$v_h = v_{10} \left(\frac{h}{10}\right)^{1/7}$$

 ${\bf v}_{\rm h}\,$  = velocidad del viento a la altura de los conductores

 $v_{10}$  = velocidad del viento a 10 m del suelo (dato meteorológico)

h = altura promedio de los soportes

#### CÁLCULO DE LA PRESIÓN DEL VIENTO SOBRE CONDUCTOR O CABLE DE GUARDA

La presión que el viento ejerce sobre el conductor o cable de guarda se obtiene de:

$$P_{vc} = P_v x \varphi_c$$

 $\begin{array}{l} P_{vc} \, = Presi\'on \,\, del \,\, viento \\ \phi_C \, = \, di\'ametro \,\, del \,\, conductor \end{array}$ 

#### HIPÓTESIS DE CÁLCULO DE CONDUCTORES y CABLE DE GUARDA

## Hipótesis I.- Esfuerzos máximos

IA.-

- Temperatura mínima
- Presión de viento máxima
- Coeficiente de Seguridad (respecto al tiro máximo)

IB.-

- Temperatura mínima
- Costra de hielo máxima
- Coeficiente de Seguridad

#### HIPÓTESIS DE CÁLCULO DE CONDUCTORES y CABLE DE GUARDA

#### Hipótesis II.- Condiciones medias

- Temperatura promedio
- Presión de viento media
- Coeficiente de Seguridad alto (Tensión de Cada Día)

## Hipótesis III.- Temperatura máxima

- Máxima flecha
- Temperatura máxima
- Presión de viento nula

#### HIPÓTESIS DE CÁLCULO DE CONDUCTORES y CABLE DE GUARDA

La información se obtiene de la estadística meteorológica.

En líneas largas se analiza de preferencia la línea dividida por zonas

#### Ej. Línea Lima-Chimbote, 220 kV, 450 km:

Hipótesis I: Temperatura 0°C

Viento 90 km/h

C.S. 2,5

Hipótesis II: Temperatura 20°C

Viento 54 km/h

Hipótesis III: Temperatura 60°C

Viento nulo

#### ECUACIÓN DE CAMBIO DE ESTADO

Variación Geométrica = Variación por Dilatación + Variación por Tensión

Denominamos con subíndices 1 a las condiciones iniciales y con subíndice 2 a las condiciones finales

$$L_2 - L_1 = \alpha d(t_2 - t_1) + d \frac{T_{02} - T_{01}}{SxE}$$

= longitud final e inicial del conductor

= coeficiente de dilatación

d = vano

 $\begin{array}{ll} t_2,\,t_1 &= \text{temperatura final e inicial} \\ T_{02},\,T_{01} &= \text{tensión final e inicial en el punto más bajo} \\ &= \text{sección del conductor} \end{array}$ 

= módulo de elasticidad

## ECUACIÓN DE CAMBIO DE ESTADO

MODULOS DE ELASTICIDAD Y COEFICIENTES DE DILATACION DE MATERIALES

|          | HILOS  | E(kg/   | a (*C-1) |            |
|----------|--------|---------|----------|------------|
| MATERIAL | HILUS  | INICIAL | FINAL    | ] " ( 5-17 |
| COBRE Y  | 1      | 10,200  | 11,930   | 0.00001692 |
| BRONCE   | 3 v 12 | 9,840   | 11,930   | 0.00001692 |
|          | Otros  | 10,200  | 11,930   | 0.00001692 |
|          | 1      | -       | 7,020    | 0.00002304 |
|          | . 7    | 5,340   | 6,180    | 0.00002304 |
| ALUMINIO | 19     | 5,060   | 6,080    | 0.00002304 |
|          | 37     | 4,920   | 5,970    | 0.00002304 |
|          | 61     | 4,710   | 5,870    | 0.00002304 |
|          | 1      | -       | 19,670   | 0.00001152 |
| ACERO    | 7      |         | 19,300   | 0.00001152 |
|          | 19     | -       | 18,970   | 0.00001152 |
|          | 37     | -       | 18,270   | 0.00001152 |
|          | 6/1    | 6,115   | 8,080    | 0.00001899 |
|          | 8/1    | 8,080   | 9,850    | 0.00001710 |
|          | 18/1   | 5,270   | 6,750    | 0.00002124 |
|          | 6/7    | 5,760   | 7,350    | 0.00001953 |
|          | 8/7    | 7,030   | 8,790    | 0.00001764 |
|          | 12/7   | 9,770   | 10,540   | 0.00001530 |
|          | 26/7   | 6,180   | 7,710    | 0.00001899 |
| ACSR     | 30/7   | 6,250   | 7,875    | 0.00001773 |
| MUSH     | 54/7   | 5,100   | 6,820    | 0.00001935 |
|          | 16/19  | 10,530  | 11,730   | 0.00001422 |
|          | 18/19  | 11,590  | 11,800   | 0.00001350 |
|          | 30/19  | 6,210   | 7,350    | 0.00001755 |
|          | 42/19  | 8,225   | 9,350    | 0.00001375 |
|          | 54/19  | 4,850   | 6,500    | 0.00001926 |
|          | 3/4    | 11,590  | 12,650   | 0.00001359 |
|          | 4/3    | 9,140   | 11,070   | 0.00001503 |
| ALDREY   | -      | 4,800   | 6,000    | 0.00002300 |
|          | 37     | 5,700   | 6.200    | 0.00002300 |

#### ECUACIÓN DE CAMBIO DE ESTADO

La longitud del cable desarrollada por series es:

$$L = d + \frac{d^3}{24} x \frac{\omega_r^2}{T_0^2}$$

Tomando en cuenta que:

$$\sigma_{01}=rac{T_{01}}{S}$$
 y  $\sigma_{02}=rac{T_{02}}{S}$ 

#### ECUACIÓN DE CAMBIO DE ESTADO

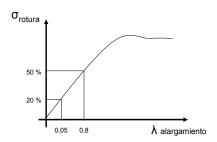
Reemplazando, reagrupando y despejando términos se llega a:

$$\sigma_{02}^{2} \left[ \sigma_{02} + \alpha E(t_{2} - t_{1}) + \frac{\omega_{r1}^{2} d^{2} E}{24 S^{2} \sigma_{01}^{2}} - \sigma_{01} \right] = \frac{\omega_{r2}^{2} d^{2} E}{24 S^{2}}$$

Ecuación de Cambio de Estado para Vanos Cortos y Sin Desnivel

## ECUACIÓN DE CAMBIO DE ESTADO

Vanos desnivelados de longitud promedio


HOJA DE CÁLCULO

$$\sigma_{02}^{2} \left[ \sigma_{02} + \alpha E \cos \psi (t_{2} - t_{1}) + \frac{\omega_{r1}^{2} d^{2} E \cos^{3} \psi}{24S^{2} \sigma_{01}^{2}} - \sigma_{01} \right] = \frac{\omega_{r2}^{2} d^{2} E \cos^{3} \psi}{24S^{2}}$$

Ecuación de Cambio de Estado para Vanos de Longitud Promedio y Desnivel

#### ALARGAMIENTO POR ASENTAMIENTO

Los conductores trabajan para tensiones mecánicas en la zona de proporcionalidad



#### ALARGAMIENTO POR ASENTAMIENTO

Puede suceder que los conductores y cable de guarda tengan un proceso de pretensión, que consiste en darles un tiro mayor al tiro máximo al que estarán sometidos, en un 10 a 15%, por un tiempo mayor o igual a 12 horas

Cuando no se efectúa pretensión se puede efectuar un cálculo racional de los valores iniciales del tiro  $T_{\rm o}$  y la flecha, con base al alargamiento ( $\lambda$ )

#### ALARGAMIENTO POR ASENTAMIENTO

Por dilatación:

$$L_2 = L_1(1 + \alpha \Delta t)$$

$$L_2 = L_1 + L_1 \alpha \Delta t$$

$$\frac{L_2 - L_1}{L_1} = \alpha \Delta t = \lambda$$

 $\lambda$  = alargamiento

#### ALARGAMIENTO POR ASENTAMIENTO

Si se conoce  $\lambda$  y  $\alpha$  se puede obtener un  $\Delta t$  ficticio que considere el alargamiento

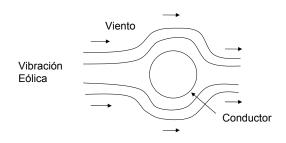
$$\Delta t = \frac{\lambda}{\alpha}$$

Este Δt se suma a la temperatura real en el cambio de estado, cuando se hace este cálculo se emplea el módulo de elasticidad inicial

|          | HILOS  | E(kg/r  | E(kg/nn2) |            |  |
|----------|--------|---------|-----------|------------|--|
| MATERIAL |        | INICIAL | FINAL     | a (*C-1)   |  |
| COBRE Y  | 1      | 10,200  | 11,930    | 0.00001692 |  |
| BRONCE   | 3 y 12 | 9,840   | 11,930    | 0.00001692 |  |
|          | Otros  | 10,200  | 11,930    | 0.00001692 |  |
|          | 1      | -       | 7,020     | 0.00002304 |  |
|          | 7      | 5,340   | 6,180     | 0.00002304 |  |
| LUMINIO  | 19     | 5,060   | 6,0B0     | 0.00002304 |  |
|          | 37     | 4,420   | 5,470     | 0.00002304 |  |
|          | 61     | 4,710   | 5,870     | 0.00002304 |  |
|          | 1      | -       | 19,670    | 0.00001152 |  |
| CERO     | 7      |         | 19,300    | 0.00001152 |  |
|          | 19     | -       | 18,970    | 0.00001152 |  |
|          | 37     | -       | 18,270    | 0.00001152 |  |
|          | 6/1    | 6,115   | 8,080     | 0.00001899 |  |
|          | 8/1    | 8,080   | 9,850     | 0.00001710 |  |
|          | 18/1   | 5,270   | 6,750     | 0.00002124 |  |
|          | 6/7    | 5,760   | 7,350     | 0.00001953 |  |
|          | 8/7    | 7,030   | 8,790     | 0.00001764 |  |
|          | 12/7   | 9,770   | 10,540    | 0.00001530 |  |
|          | 2677   | 6,100   | 7,740     | 0.00001999 |  |
| ACSR     | 30/7   | 6,250   | 7,875     | 0.00001773 |  |
| mount.   | 54/7   | 5,100   | 6,820     | 0.00001935 |  |
|          | 16/19  | 10,530  | 11,730    | 0.00001422 |  |
|          | 18/19  | 11.590  | 11,800    | 0.00001350 |  |
|          | 30/19  | 6,210   | 7,350     | 0.00001755 |  |
|          | 42/17  | 8,220   | 9,350     | 0.00001373 |  |
|          | 54/19  | 4,850   | 6,500     | 0.00001926 |  |
|          | 3/4    | 11,590  | 12,650    | 0.00001359 |  |
|          | 4/3    | 9,140   | 11,070    | 0.000015   |  |
| ALDREY   |        | 4,800   | 6,000     | 0.00002300 |  |
|          |        |         |           |            |  |

#### ALARGAMIENTO POR ASENTAMIENTO

Para el caso del ACSR el esfuerzo es para la sección total (Aluminio + Acero), Se obtiene el esfuerzo del aluminio mediante:


$$\sigma_{\scriptscriptstyle A} = \sigma_{\scriptscriptstyle total} x \frac{E_{\scriptscriptstyle A}}{E_{\scriptscriptstyle total}}$$

Este valor debe estar dentro del límite que fija el coeficiente de seguridad

#### TENSIÓN DE CADA DÍA

Los conductores están sometidos a fenómenos vibratorios, cuyas probabilidades se incrementan cuanto mayor es la tensión mecánica

Para evitar o atenuar este fenómeno se recomienda límites para la tensión mecánica del conductor



#### TENSIÓN DE CADA DÍA

#### Tensión de Cada Día

"La tensión máxima admisible en un conductor durante el periodo de tiempo más largo del año sin que experimente vibración eólica"

Se expresa como porcentaje del Tiro de Rotura Está relacionado con la "temperatura de cada día" (temperatura media diaria promedio

# TCD en % del TIRO DE ROTURA

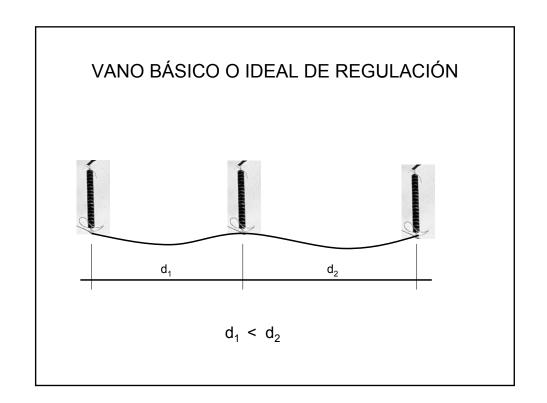
| Tipo de Conductor           | Líneas sin | Líneas con Protección   |                       |                              |  |
|-----------------------------|------------|-------------------------|-----------------------|------------------------------|--|
|                             | protección | Con Base de<br>Varillas | Con<br>Antivibradores | Con Base y<br>Antivibradores |  |
| Cobre                       | 26         |                         |                       |                              |  |
| AAC                         | 17         |                         |                       |                              |  |
| AAAC                        | 18         |                         | 26                    |                              |  |
| ACSR                        | 18         | 22                      | 24                    | 24                           |  |
| Cable acero grapa rígida    | 11         |                         |                       |                              |  |
| Cable acero grapa giratoria | 13         |                         |                       |                              |  |

# PROTECCIÓN CONTRA LA VIBRACIÓN EÓLICA



Varillas de Armar




Stock Bridge

## PROTECCIÓN CONTRA LA VIBRACIÓN EÓLICA



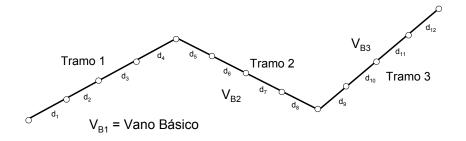


Las líneas con conductores múltiples o subconductores tienen menos vibraciones debido al efecto de amortiguación de los separadores



#### VANO BÁSICO SI NO HAY DESNIVEL

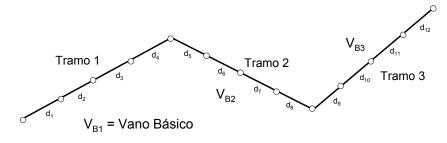
VanoBásico = 
$$\sqrt{\frac{d_1^3 + d_2^3 + d_3^3 + \dots + d_n^3}{d_1 + d_2 + d_3 + \dots + d_n}}$$


d1, d2, ..... dn = longitud de vano que conforman cada tramo de línea

#### VANO BÁSICO SI HAY DESNIVEL

$$VanoBásico = \sqrt{\frac{d_1^3/\cos\psi + d_2^3/\cos\psi + \dots + d_n^3/\cos\psi}{d_1 + d_2 + \dots + d_n}}$$

d1, d2, ..... dn = longitud de vano que conforman cada tramo de línea


## TABLA DE REGULACIÓN



Los vanos (d) no son necesariamente iguales, dependen en mucho de la topología del terreno

#### TABLA DE REGULACIÓN

Al momento de realizar el montaje se aplica el tiro horizontal  $(T_o)$  que corresponde al vano básico del tramo que se tiempla



Dado que la temperatura puede ser cualquiera, considerando esta temperatura y vanos comprendidos entre el menor y mayor posibles, se calculan las flechas y tiros

#### TABLA DE REGULACIÓN

Flechas para vanos diferentes al Básico y una determinada temperatura

$$f_1 = \frac{\omega_{r1} x d_1^2}{8xT_o}$$

$$f_2 = \frac{\omega_{r2} x d_2^2}{8xT_o}$$

Haciendo:

$$\frac{f_1}{f_2} = \frac{d_1^2}{d_2^2}$$

$$f_2 = f_1 \left(\frac{d_2}{d_1}\right)^2$$

# TABLA DE REGULACIÓN Hipótesis de Cálculo

• Hipótesis I (máximo esfuerzo)

 $t_1$  (mín) = 10°C

 $P_{v1} = 30 \text{ kg/m}^2$ C.S. = 3

• Hipótesis II (templado)

 $t_2$  (prom.) = 20°C

 $P_{v2}$ = 0

T.C.D. = 22%

# TABLA DE REGULACIÓN

#### Flecha en metros

| Temperatura | $\sigma_0$ (kg/mm <sup>2</sup> ) | Vano (m) |      |      |       |
|-------------|----------------------------------|----------|------|------|-------|
| (°C)        |                                  | 100      | 200  | 300  | 400   |
| 10°C        | 6,35                             | 0,54     | 2,15 | 4,84 | 8,60  |
| 20°C        | 5,69                             | 0,60     | 2,41 | 5,41 | 9,62  |
| 30°C        | 5,13                             | 0,66     | 2,66 | 5,99 | 10,65 |