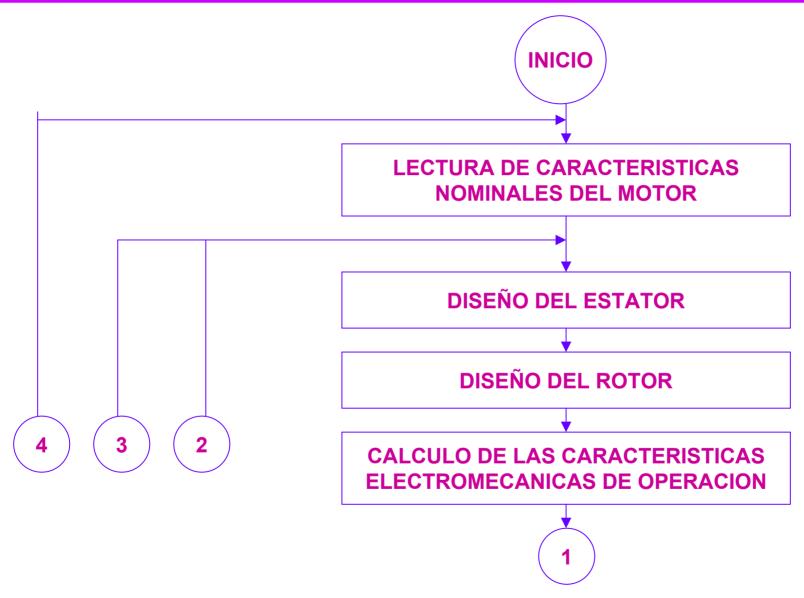
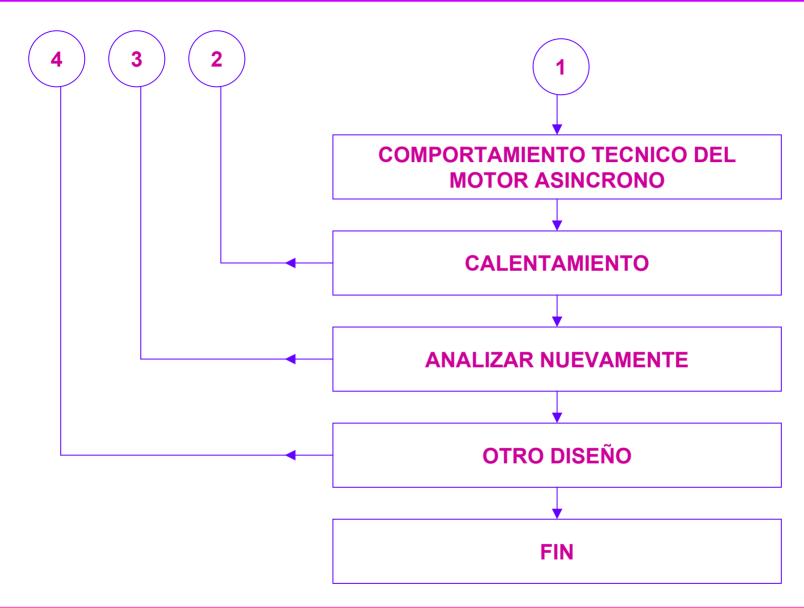


EXPOSITOR: Ing. HUBER MURILLO M.

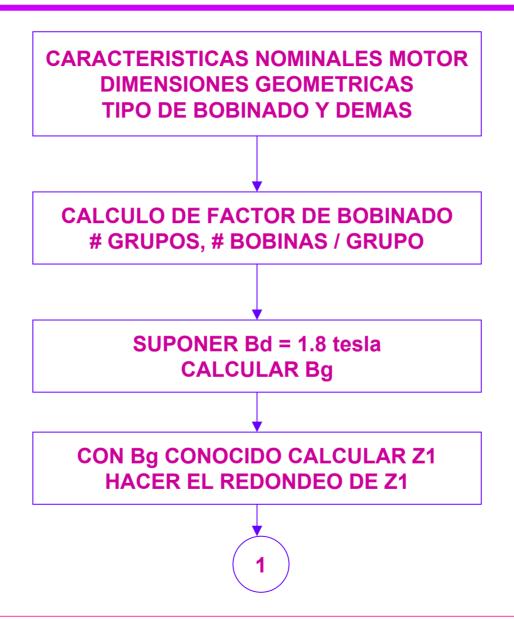
INTRODUCCION

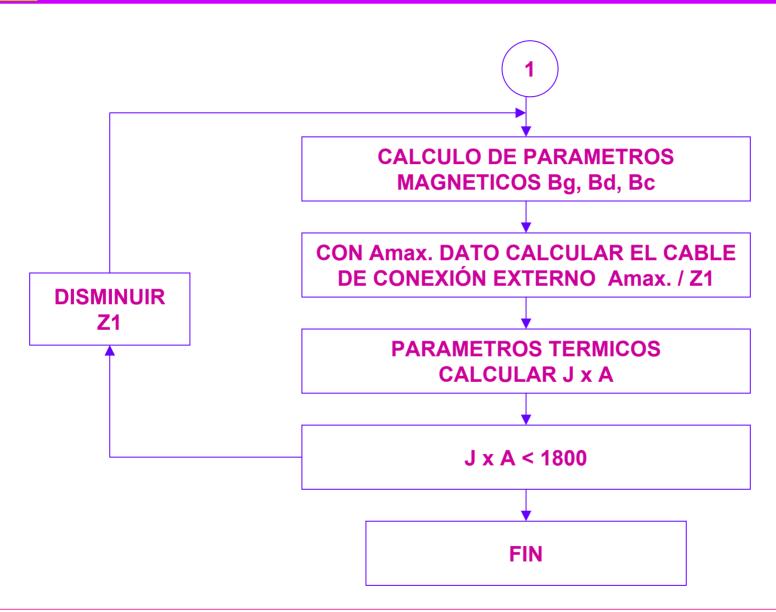

A CONTIMUACION PRESENTAMOS EL DIAGRAMA DE FLUJO DEL PROGRAMA DE CALCULO DE MOTORES ASINCRONOS TRIFASICOS ASISTIDOS POR COMPUTADORA.

ASI MISMO PRESENTAMOS EL 100% DE LA FORMALACION Y LEYENDAS CORRESPONDIENTES PARA FACILITAR LA COMPRESION DE LA FORMALUCION DE LOS DIVERSOS PARAMETROS PRESENTADOS.


EL OBJETIVO ES FACILITARLE SUS CALCULOS EN LOS TRABAJOS DE REPARACIONES Y/O DISEÑ DE UNA DETERMINADA MAQUINA.

DISEÑO DEL MOTOR ASINCRONO





DISEÑO DEL ESTATOR

DISEÑO DEL ESTATOR

CALCULO DEL BOBINADO ESTATORICO UTILIZANDO PROGRAMAS COMPUTACIONALES

ADQUISICION DE DATOS QUE SE PUEDEN TOMAR:

- DIMENSIONES GEOMETRICAS ESTATORICAS D, T1, C1
- LONGITUD DEL PAQUETE MAGNETICO L.
- NUMERO DE RANURAS ESTATORICAS S1.
- AREA MAXIMA DE LLENADO Amax.
- NUMERO DE POLOS P.
- FRECUENCIA F (Hertz)
- TENSION V (Voltios)
- POTENCIA HP ó KW
- EFICIENCIA EF.
- FACTOR DE POTENCIA FP
- TIPO DE BOBINADO: IMBRICADO O CONCENTRICO
- TIPO DE CONEXIÓN: ESTRELLA O TRIANGULO.
- CON HP, FP Y EF SE CALCULA LA CORRIENTE NOMINAL In.

PARAMETROS MAGNETICOS

1. INDUCCION EN EL ENTREHIERRO (Bg)

$$Bg = 0.38 \times P \times V \times a / D \times L \times F \times S1 \times Kw \times Z1$$
 Tesla

2. INDUCCION EN EL DIENTE (Bd)

Bd =
$$\pi \times D \times Bg / T1 \times S1 \times 0.95$$
 Tesla

3. INDUCCION EN EL ENTREHIERRO (Bg)

$$Bc = D \times Bg / p \times C1 \times 0.95$$
 Tesla

PARAMETROS TERMICOS

1. DENSIDAD DE CORRIENTE ELECTRICA (J)

$$J = IL / a \times SC$$

Amp mm²)

2. DENSIDAD LINEAL (A)

 $A = S1 \times Z1 \times IL / a \times \pi \times D$

Amp / cm.

D = Diámetro en cm.

IL = Corriente de línea (Amperios)

SC = Sección neta del conductor de los alambres en mano

PARAMETROS ELECTRICOS

1. POTENCIA NOMINAL (HP, KW)

HP =
$$\sqrt{3} \times V \times I \times FP \times EF / 746$$

$$KW = \sqrt{3} \times V \times I \times FP \times EF$$

2. CORRIENTE NOMINAL (Amperios)

IL =
$$746 \times HP / \sqrt{3} \times V \times I \times FP \times EF$$

IL = KW
$$/\sqrt{3} \times V \times I \times FP \times EF$$

LEYENDA

p = NUMERO DE POLOS

V = TENSION NOMINAL EN VOLTIOS

a = FACTOR DE CONEXIÓN

D = DIAMETRO INTERNO DEL ESTATOR (m)

L = LONGITUD DEL PAQUETE MAGNETICO (m)

S1 = NUMERO DE RANURAS ESTATORICAS

Z1 = NUMERO DE VUELTA TOTAL DE CONDUCTORES POR RANURAS

T1 = ANCHO DEL DIENTE (m)

C1 = ALTURA DE LA CORONA (m)

Kw = FACTOR DE BOBINADO

CALCULOS DEL FACTOR DE BOBINADO

- q = # BOBINAS / GRUPO = S1 / m p

$$- Yc = S1 / P$$

$$Y = (5/6) Yc$$

$$Y = (5/6) Yc$$
 $\delta_{\delta} = P \times 360 / 2 \times S1$

BOBINADO IMBRICADO: KW = kp x kd

$$Kp = SEN \{(Y /YC) 90^{\circ}\}$$

Kd = SEN (q
$$\delta_{\delta}$$
 / 2) / q SEN (δ_{δ} / 2)

BOBINADO INBRICADO: KW = kp x kd (kd = 1)

$$Kp = SEN \{(YI/YC) 90^{\circ}\}$$

$$YYI = Y1 + Y2 + Y3 + ... + Yn / n$$

Paso promedio

DIMENSIONAMIENTO DE LA MAQUINA

METODO DL

HP = 4.96E-5 EF . FP . SI . D . L . Acu J1 Kw . Bg . Ns

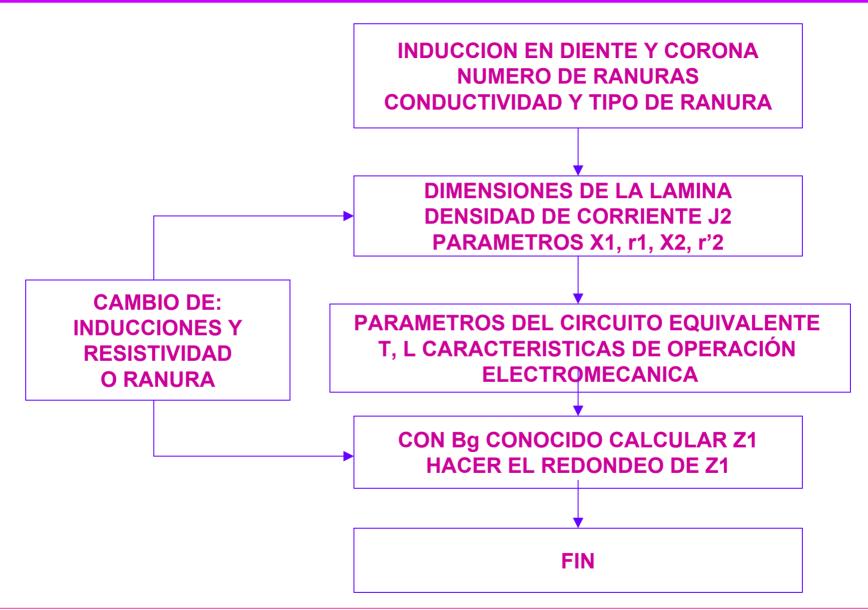
METODO D²L

HP = 1.558E-4 EF . FP . A1 . Kw . Bg . Ns . D²L / Ke

Acu = Z1 acu siendo acu el area neta de los alambres en mano.

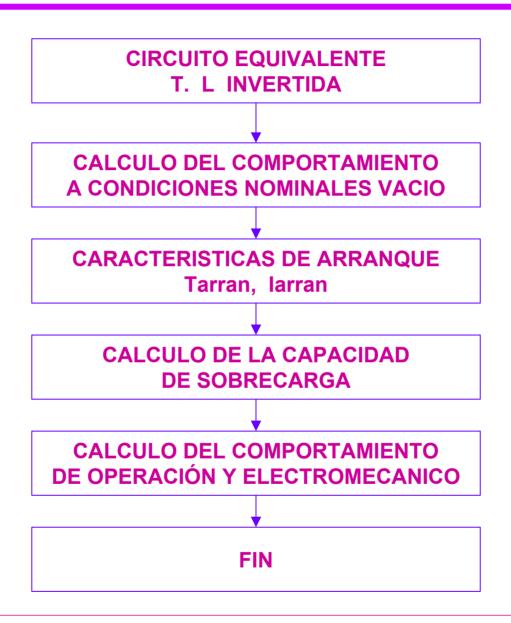
J1 = DENSIDAD DE CORRIENTE ELECTRICA

Ns = VELOCIDAD SINCRONA

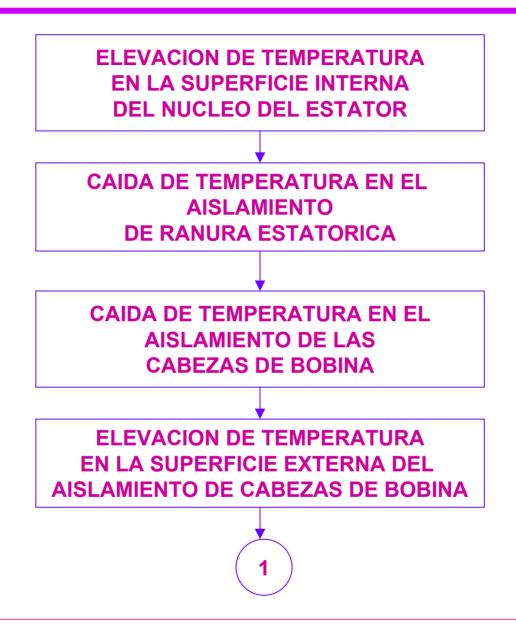

A1 = DENSIDAD LINEAL (VER TABLA 8)

Ke = FACTOR DE CAIDA DE TENSION A CONDICIONES NORMALES.

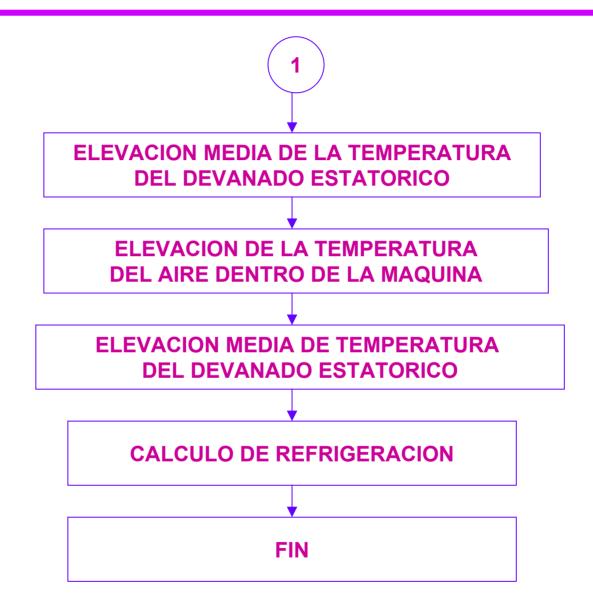
Ke = (0.93 0.98) Ke (práctico) = 0.05



DISEÑO DEL ROTOR



CARACTERISTICAS ELECTROMECANICAS DE OPERACION



CALCULO DEL COMPORTAMIENTO TERMICO

EXPOSITOR: Ing. HUBER MURILLO M.

CONCEPTO:

Se llama factor de bobinado al producto del factor de paso por el factor de distribución.

$$K_b = K_p \times K_d$$

Donde:

 K_b : Factor de bobinado

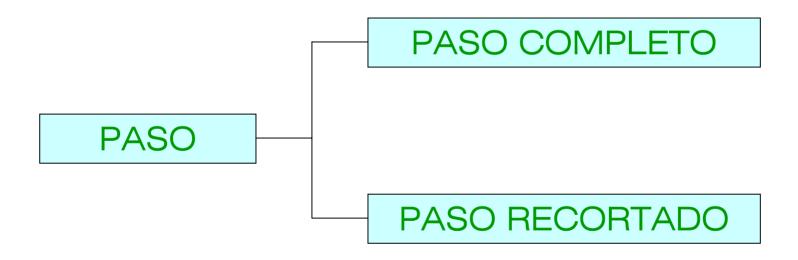
 K_p : Factor de paso

 K_d : Factor de distribución

TIPOS DE BOBINADO

Concéntrico

Cuando el grupo de bobinas está formado por bobinas de paso diferente

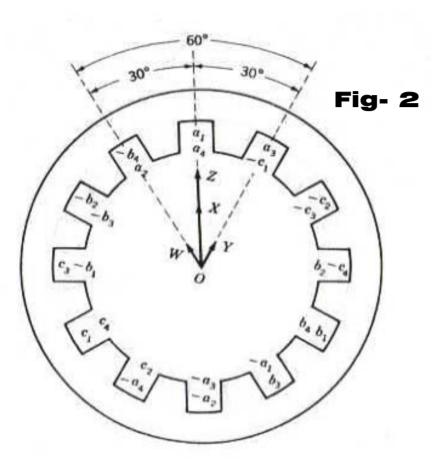

<u>Imbricado</u>

Cuando el grupo de bobinas está formado por bobinas del mismo paso

PASO


Es la diferencia entre el numero de ranuras (hipotetico) en los cuales son colocados los lados de la bobina.

En la figura 1 se muestra un ejemplo sencillo de un devanado distri-buido, para una máquina trifásica de dos polos y paso completo con su diagrama fasorial de voltajes


Todas las bobinas individuales de la fig.1 abarcan todo un paso polar, o sea 180 grados eléctricos; en consecuencia, el devanado es devanado de paso completo

- En general, un lado de una bobina, como el a₁, se coloca en el fondo de una ranura, y el otro lado, a₁, en la parte superior.
- Los lados de la bobina como los a₁ y a₃ ó a₂ y a₄ que están en ranuras vecinas y relacionados con la misma fase constituyen un grupo de conductores de una fase, ó banda de fase.
- Todos los grupos son semejantes cuando se tienen números enteros de ranuras por polo por fase, y para la máquina normal el ángulo periférico abarcado por un grupo de conductores de una fase es 60 grados eléctricos para la máquina trifásica y 90 grados eléctricos para la máquina bifásica.

En la figura 2 suponemos que todos los lados de la bobina en las partes superiores de las ranuras se corren una ranura en el sentido contrario al de las manecillas del reloj

•Cualquier bobina, como por ejemplo la a₁, a₋₁, abarca solo cinco sextos de un paso polar, o sea ⁵/₆(180)=150 grados eléctricos, y entonces el devanado se llama *de paso fraccionario* ó *acortado*

Paso Completo (Y_c): Si el paso es igual al intervalo polar

$$Y_C = \frac{S_1}{P} = \frac{Número de Ranuras Estatóricas}{Número de Polos}$$

Paso Recortado (Y): Facilita la colocación de las bobinas, se ahorra alambre esmaltado en el bobinado y mejora las características de las máquinas eléctricas rotativas

$$Y = \frac{5}{6}(Y_C)$$

CARACTERISTICAS

Se sacrifica algo cuando se usan los devanados distribuidos y de paso fraccionario como en las figuras 1 y 2, en comparación con un devanado de paso completo; para el mismo número de vueltas por fase:

 El voltaje de frecuencia fundamental que se genera es menor.

Sin embargo:

- •Las armónicas disminuyen por un factor apreciablemente mayor tanto de las ondas de voltaje como de fuerzas magnetomotrices.
 - Aumenta el número total de vueltas que puede acomodarse en determinada geometría del hierro

Tenemos que considerar dos efectos:

- 1. El efecto de distribuir el devanado de la figura 1 es que los voltajes de las bobinas a₁ y a₂ no estan en fase con los de las bobinas a₃ y a₄. Con ello el voltaje de las bobonas a₁ y a₂ se puede representar por el fasor *OX*, y el de las bobinas a₃ y a₄ por el fasor *OY*. El fasor *OZ* resultante para la fase a es, naturalmente, menor que la suma aritmetica de *OX* y *OY*
- 2. El efecto de paso fraccionario de la figura 2 es que una bobina enlaza una parte menor del flujo total de polos que si fuera una bobina de paso completo.

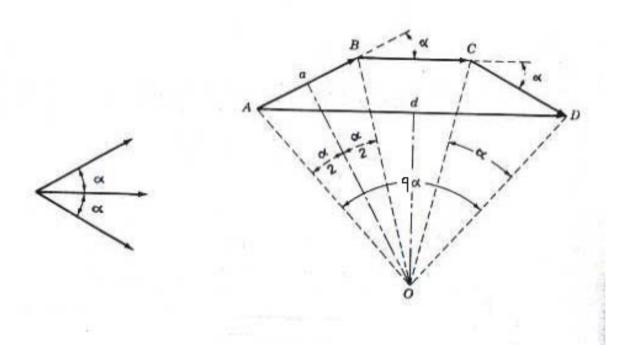
El efecto se puede sobreponer con el de distribuir el devanado si se consideran los lados a_2 y $-a_1$ de bobina como una bobina equivalente con el voltaje fasorial OW, a los lados de bobina a_1 a_4 , $-a_2$, $-a_3$ como dos bobinas equivalentes con voltaje fasorial OX (el doble de la longitud OW), y los lados de bobina a_3 y $-a_4$ como una bobina equivalente con voltaje fasorial OY.

Se puede abarcar la combinación de estos dos efectos en un factor de devanado ó bobinado k_W que se usa como factor de reducción en la ecuación siguiente:

$$E = \sqrt{2}\pi f N_{ph} \Phi$$

Así el voltaje generado por fase es:

$$E = \sqrt{2\pi} KwfN_{ph}\Phi$$


Donde:

- f: frecuencia
- Φ: fundamental del flujo por polo
- N_{ph}: número total de vueltas en serie por fase
- K_w: factor de devanado ó bobinado

FACTORES DE ANCHURA Y DE PASO

El efecto de distribuir el devanado en q ranuras por grupo de fase es dar q fasores de voltaje desfasados en el ángulo eléctrico α entre las ranuras, y α es igual a 180 grados eléctricos dividido entre el número de ranuras por polo.

(a) Fasores de voltaje bobina (b) Suma fasorial

- •Cada fasor AB, BC y CD es la cuerda de un circulo con centro en O y abarca el ángulo α en el centro.
- •El fasor suma AD subtiende el ángulo qα, el cual, como se hizo notar anteriormente, es 60 grados eléctricos para la máquina trifásica normal con devanado uniformemente distribuido y 90 grados eléctricos para la máquina bifásica correspondiente.

De los triangulos *OAa* y *Oad* :

$$OA = \frac{Aa}{Sen\left(\frac{\alpha}{2}\right)} = \frac{AB}{2Sen\left(\frac{\alpha}{2}\right)}$$

$$OA = \frac{Ad}{Sen\left(\frac{q\alpha}{2}\right)} = \frac{AD}{2Sen\left(\frac{q\alpha}{2}\right)}$$

Igualando estos dos valores de OA, se obtiene:

$$AD = AB \frac{Sen\left(\frac{q\alpha}{2}\right)}{Sen\left(\frac{\alpha}{2}\right)}$$

Pero la suma aritmetica de los fasores es q(AB). En consecuencia, el factor de reducción obtenido de la distribución del devanado es:

$$Kd = \frac{AD}{qAB} = \frac{Sen\left(\frac{q\alpha}{2}\right)}{qSen\left(\frac{\alpha}{2}\right)}$$
 Al factor Kd se le llama $factor de$ anchura del devanado ó $factor de$

$$\alpha = (P/2)(360/S_1)$$

anchura del devanado ó factor de

distribución que aparece en un grupo de bobinas que no tienen el mismo eje magnético.

Ahora el *factor de paso* nos da la idea de la cantidad de flujo concatenado por una bobina

$$Kp = Sen\left(\frac{Y \times 90}{Y_C}\right)$$

Cuando se aplican los factores tanto de distribución como de paso el voltaje rms queda:

$$E = \sqrt{2}\pi Kd.KpfN_{ph}\Phi$$

Que es una forma alterada de la ecuación 2; se ve que el factor de devanado K_w es el producto de los factores de paso y de distribución

$$Kw = Kp.Kd$$

Factor de paso (Kp)

$$Kp = Sen\left(\frac{Y \times 90}{Y_C}\right)$$

Factor de distribución (Kd)

$$Kd = \frac{AD}{qAB} = \frac{Sen\left(\frac{q\alpha}{2}\right)}{qSen\left(\frac{\alpha}{2}\right)}$$

Factor de bobinado(k_W): Es un indicador menor que la unidad, que reune dos conceptos teniendo en cuenta que las fuerzas electromotrices de los diferentes radio vectores están desfasados entre sí y se componen vectorialmente.

$$Kw = Kp.Kd$$

Factor de bobinado para un bobinado concéntrico

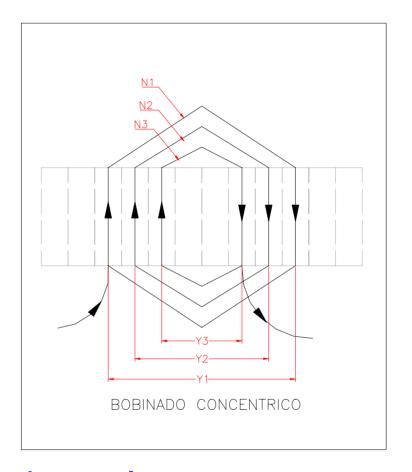


Fig. 3

Dor

Ni: número de vueltas

Yi: paso de la bobina i

q : número de bobinas por grupo

Por ser devanado concéntrico (Kd = 1) debido a que el grupo de bobinas tiene el mismo eje magnético, por lo tanto solo se podría efectuar el cálculo del factor de paso

Luego:

$$K_{b}\delta = \frac{N_{1}Kp_{1}\delta + \dots N_{i}Kp_{i}\delta}{N_{1} + N_{2} + \dots N_{i}}$$
 1

$$K_b \delta = \frac{\sum_{i=1}^q N_i K_p i \delta}{\sum_{i=1}^q N_i}$$

Siendo:

$$(2) \quad K_{pi} = Sen\delta \frac{Yi}{Y} \times 90^{\circ} \qquad \text{Yc = S1/P}$$

$$q = S1/3P$$

Luego calculamos $Kpi\delta$ y conociendo Ni podemos encontrar el factor de bobinado para un bobinado concéntrico, ecuación (2)

Factor de bobinado para un bobinado imbricado en forma general

FACTOR DE PASO

Nos da la idea de la cantidad de flujo concatenado por una bobina.

$$K_p\delta = Sen\delta\beta \frac{\pi}{2} \Rightarrow \beta = \frac{Y}{Yc}$$

$$K_p\delta = Sen\delta \frac{Y}{Yc} \frac{\pi}{2} \quad (3)$$

- Cuando la bobina tiene paso completo es decir: Y=Yc esto implica que Kp=1, se habrá concatenado todo el flujo de la onda de campo
- Cuando la bobina tiene paso recortado Kp≠1, esto implica que solo concatena una parte de la onda de flujo y se usa para **ELIMINAR ARMONICOS**

Donde:

$$Yc = S1/P$$

FACTOR DE DISTRIBUCIÓN

Fig.4

El factor de distribución aparece en un grupo de bobinas, que no tienen un mismo eje magnético (bobinado imbricado), debido a que la tensión inducida en el grupo de bobinas es menor que la suma aritmetica de la tensión inducida en cada bobina

$$Kd = \frac{\text{Suma Vectorial de las componentes de F.M.M.}}{\text{Suma Aritmética de los componentes de F.M.M.}}$$

Por lo tanto:

$$K_d = \frac{e_T}{e_1 + e_2 + e_3}$$
 (4)

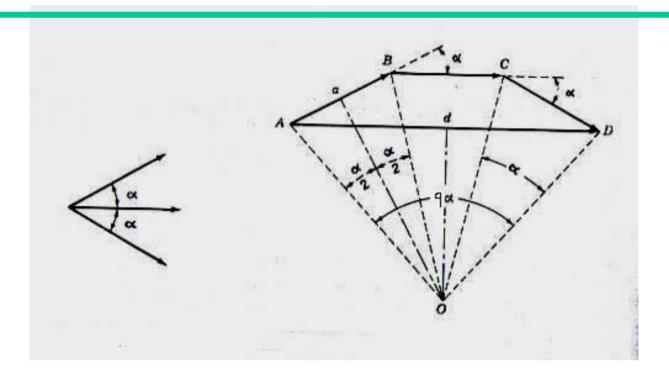


Fig.3

Donde :
$$(e_1=AB) (e_2=BC) (e_3=CD) y (e_T=AD)$$

$$\alpha = \gamma$$
r

Gráfico que nos proporciona el Kd sólo cuando se trate de q constante

Del gráfico observamos que e1 está desfasado de e2 un ángulo (γr') por que está corrido una ranura

$$\gamma_r' = \frac{P}{2} \left(\frac{360}{S_1} \right)$$

P: # de polos S1:# de ranuras

Del gráfico:

$$\left| \overrightarrow{e_1} \right| = \left| \overrightarrow{e_2} \right| = \left| \overrightarrow{e_3} \right|$$

En general en el triangulo AaO de la gráfica 3:

$$\frac{e_1}{2} = rSen\left(\frac{\gamma_r'}{2}\right) \qquad \qquad \qquad \qquad e_1 = 2rSen\left(\frac{\gamma_r'}{2}\right)$$

OA= r : radio del círculo

En general:

$$e_1 + e_2 + e_3 = 2qrSen\left(\frac{\gamma_r'}{2}\right)$$
 5

Para e_⊤ tenemos que:

Reemplazando (6) y(5) en (4)

$$K_{d} = \frac{e_{T}}{e_{1} + e_{2} + e_{3}} = \frac{2rSenq\left(\frac{\gamma_{r}'}{2}\right)}{2qrSen\left(\frac{\gamma_{r}'}{2}\right)} = \frac{Senq\left(\frac{\gamma_{r}'}{2}\right)}{qSen\left(\frac{\gamma_{r}'}{2}\right)}$$

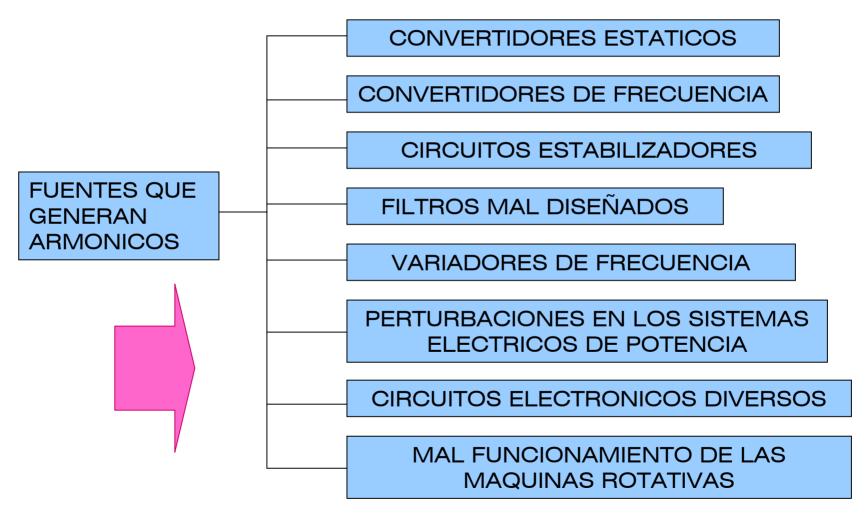
FACTOR DE BOBINADO

En general para la armonica δ :

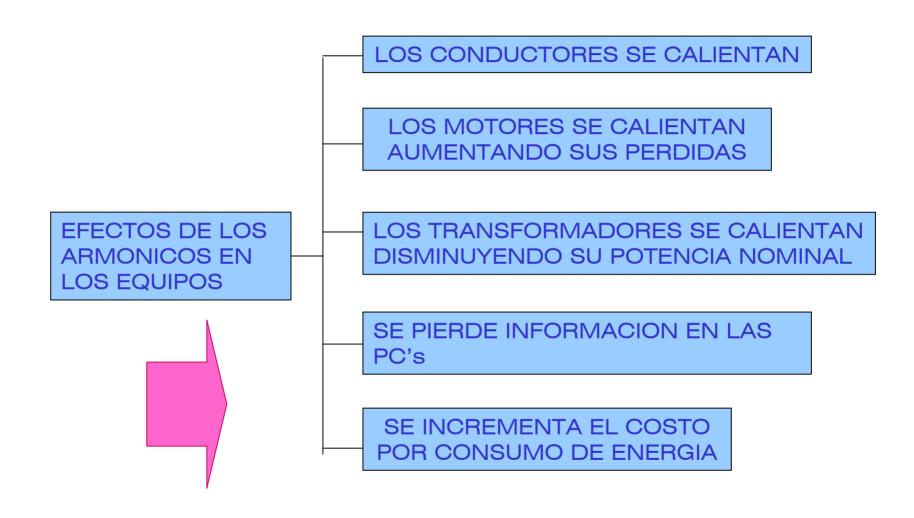
$$Kd\delta = \frac{Sen \, \delta q\left(\frac{\gamma_{r}'}{2}\right)}{qSen\left(\frac{\delta \gamma_{r}'}{2}\right)}$$
 7

Teniendo las ecuaciones de factor de paso (3)y factor de distribución (7) obtenemos el factor de bobinado

$$Kb \,\delta = \left[Sen \left(\delta \, \frac{Y}{Yc} \times 90^{\circ} \right) \right] \times \left[\frac{Sen \,\delta q \left(\frac{\gamma_{r}}{2} \right)}{qSen \left(\frac{\delta \gamma_{r}}{2} \right)} \right]$$



Supresión de los Armónicos

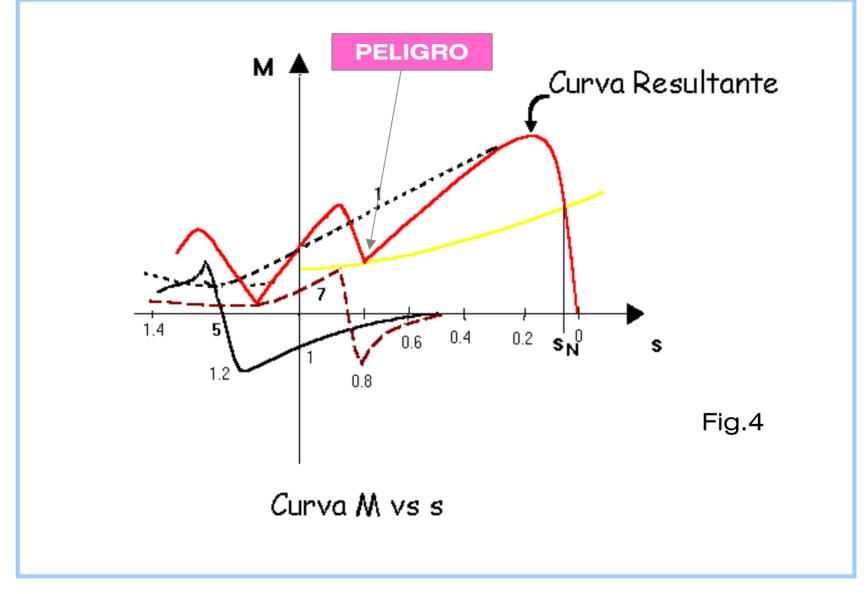

Comportamiento de los Armónicos

Son ondas de corriente ó tensión cuyas frecuencias son múltiplos enteros de la frecuencia fundamental

Comportamiento de los Armónicos

Clasificación de los armónicos

NOMBRE	F	2	3	4	5	6	7	8	9	11
FRECUENCIA (Hz)	60	120	180	240	300	360	420	480	540	600
SECUENCIA (RTS)	(+)	(-)	0	(+)	(-)	0	(+)	(-)	0	(+)


El primer armonico no deseable de la serie resulta siendo **EL QUINTO ARMONICO** y es el único de sentido contrario al principal

Da origen a pares de sentido opuesto al fundamental ó sea son pares de frenado; puesto que la velocidad sincrónica de ésta armónica es la quinta parte de la principal por tener 5 pares de polos

El efecto más perjudicial de este armónico tiene lugar en el arranque de la máquina

El segundo armónico no deseable es el **SEPTIMO ARMONICO** que es el primero de los campos giratorios armónicos de igual sentido que el principal

CURVAS M = F(s) DE LA ONDA DE CAMPO FUNDAMENTAL Y DE LOS ARMONICOS QUINTO (5) Y SETIMO (7).

Análisis de los Armónicos

Para analizar el contenido de los armónicos es necesario calcular el factor de paso para ambos armónicos QUINTO y SEPTIMO para los pasos en cuestión

Posteriormente se somete a una simple comparación de los valores absolutos y selecciono el que tiene menor porcentaje

• El factor de paso está definido por:

Donde:

$$K_p \delta = Sen \delta \frac{Y}{Yc} \frac{\pi}{2}$$

$$\delta = (6K+1)$$

$$K = 1,2,3,4,....n$$

• Para eliminar las armónicas hago: $K_p=0$

Luego:

$$Sen\delta \frac{Y}{Yc} \frac{\pi}{2} = 0$$

Entonces:

$$\delta \frac{Y}{Yc} \frac{\pi}{2} = K\pi$$

Ejemplo: Para un estator de S1=36, 4 polos

Luego:

$$Y = \frac{2K \times Yc}{\delta}$$

Donde: $\delta=5$ (5ta armónica)

 δ =7 (7ma armónica)

5ta arr	5ta armónica							
K	Υ							
1	3,6							
2	7,2							
3	10,8							
4	14,4							
5	18							

7ma arı	7ma armónica							
K	Y							
1	2,57							
2	5,14							
3	7,714							
4	10,28							
5	12,85							
7	18							

De los datos obtenemos:

$$\gamma r = 20^{\circ}$$

$$q=3$$

Seguidamente analicemos el factor de bobinado del sistema:

$$K_b \delta = K_p \delta \times K_d \delta$$

Para Y=7

$$K_{b}\delta = Sen (70 \delta) \times \left(\frac{Sen (30 \delta)}{3 Sen (10 \delta)}\right)$$

Para Y=8

$$K_{b}\delta = Sen \quad (80 \ \delta) \times \left(\frac{Sen \quad (30 \ \delta)}{3 \ Sen \quad (10 \ \delta)} \right)$$

Resultados:

	FACTOR DE BOBINADO para (Y=7)											
	δ	Kb	Contenido de armónicos $\frac{F(\delta)}{50} \times 100\%$									
1	(fundamental)	0.9019	F1 100									
5	(quinta armónica)	-0.03778	-4.189									
7	(séptima armónica)	-0.13587	-15.06									

	FACTOR DE BOBINADO para (Y=8)										
	δ	Kb	Contenido de armónicos $\frac{F(\delta)}{F1} \times 100\%$								
1	(fundamental)	0.9542	100								
5	(quinta armónica)	0.1318	14.79								
7	(séptima armónica)	0.0606	6.41								

Analizando los resultados:

•Se cumple y me indica que el Y=7 presenta menos contenido de armónicos y por tanto es menos influyente en la zona de arranque, por lo tanto es que lo elijo

Aplicaciones en máquinas rotativas

De 2, 4, 6 y 8 polos con 18, 24, 30, 36, 48, 54 y 72 ranuras

	2 POLOS												
S1	q	Yc	Υ	grados elec.	Кр	Kd	Kb (fundamental)	a5%	a7%				
24	4	12	10	15	0,965925826	0,9576622	0,925030649	5,74517	-4,40843				
30	5	15	12	12	0,951056516	0,95667722	0,909854107	1,80E-08	-9,65464				
30	5	15	13	12	0,978147601	0,95667722	0,935771531	10,6864	1,66937				
36	6	18	15	10	0,965925826	0,95614277	0,923562996	5,52586	-4,07153				
48	8	24	20	7,5	0,965925826	0,95561177	0,923050087	5,45195	-3,96228				
72	12	36	30	5	0,965925826	0,95523273	0,922683968	5,40002	-3,88678				

					4	POLOS			
S1	q	Yc	Υ	grados elec.	Кр	Kd	Kb (fundamental)	a5%	a7%
24	2	6	5	30	0,965925826	0,96592583	0,933012702	7,17968	-7,17968
36	3	9	7	20	0,939692621	0,95979508	0,901912355	-4 ,18891	-15,0644
36	3	9	8	20	0,984807753	0,95979508	0,945213637	14,7956	6,41778
48	4	12	10	15	0,965925826	0,9576622	0,925030649	5,74517	-4,40843
72	6	18	15	10	0,965925826	0,95614277	0,923562996	5,52586	-4,07153

	6 POLOS												
S1	q	Yc	Υ	grados elec.	Кр	Kd	Kb (fundamental)	a5%	a7%				
36	2	6	5	30	0,965925826	0,96592583	0,933012702	7,17968	-7,17968				
54	3	9	7	20	0,939692621	0,95979508	0,901912355	-4,18891	-15,0644				
54	3	9	8	20	0,984807753	0,95979508	0,945213637	14,7956	6,41778				
72	4	12	10	15	0,965925826	0,9576622	0,925030649	5,74517	-4,40843				

	8 POLOS												
S1	q	Yc	Υ	grados elec.	Кр	Kd	Kb (fundamental)	a5%	a7%				
24	1	3	2	60	0,866025404	1	0,866025404	-100	100				
48	2	6	5	30	0,965925826	0,96592583	0,933012702	7,17968	-7,17968				
72	3	9	7	20	0,939692621	0,95979508	0,901912355	-4,18891	-15,0644				

Donde:

a5%: contenido de armónicos respecto a la quinta armónica

a7%: contenido de armónicos respecto a la septima armónica

				FACTOR DE	BOBINADO				
					2 POLOS				
S1	Q	Yc	Υ	G.Elec	A5%	A7%	Кр	Kd	Kw
24	4	12	7	15	-26.7949	-2.70684	0.79335	0.95766	0.75976
24	4	12	8	15	-21.4413	-16.4525	0.86603	0.95766	0.82936
24	4	12	9	15	-8.88127	-16.4525	0.92388	0.95766	0.88476
24	4	12	10	15	5.74517	-4.40843	0.96593	0.95766	0.92503
24	4	12	11	15	17.1573	10.1021	0.99144	0.95766	0.94947
30	5	15	12	12	1.80E-08	-9.65464	0.95106	0.95688	0.90985
30	5	15	11	12	-11.4421	-16.7262	0.91355	0.95688	0.87397
30	5	15	12	12	1.80E-08	-9.65464	0.95106	0.95688	0.90985
30	5	15	13	12	10.6864	1.66937	0.97815	0.95688	0.93577
30	5	15	14	12	18.2046	11.673	0.99452	0.95688	0.95144
36	6	18	13	10	-13.0516	-16.7022	0.90631	0.95614	0.86656
36	6	18	14	10	-3.81094	-12.3872	0.93969	0.95614	0.89848
36	6	18	15	10	5.52586	-4.07153	0.96593	0.95614	0.92356
36	6	18	16	10	13.4606	5.27722	0.98481	0.95614	0.94162
36	6	18	17	10	18.762	12.4947	0.99619	0.95614	0.9525
48	8	24	17	7.5	-14.9583	-16.4525	0.89687	0.95561	0.85706
48	8	24	17	7.5	-14.9583	-16.4525	0.89687	0.95561	0.85706
48	8	24	18	7.5	-8.42798	-14.7874	0.92388	0.95561	0.88287
48	8	24	19	7.5	-1.40534	-10.2965	0.94693	0.95561	0.9049
48	8	24	20	7.5	5.45195	-3.96228	0.96593	0.95561	0.92305
48	8	24	21	7.5	11.5256	2.9414	0.98079	0.95561	0.93725
48	8	24	22	7.5	16.2816	9.07969	0.99144	0.95561	0.94744
48	8	24	23	7.5	19.3085	13.2909	0.99786	0.95561	0.95357
72	12	36	28	5	-3.72415	-11.8251	0.93696	0.95523	0.89763
72	12	36	29	5	0.92173	-8.17212	0.95372	0.95523	0.91102
72	12	36	30	5	5.40002	-3.88678	0.96593	0.95523	0.92268
72	12	36	31	5	9.53162	0.64809	0.9763	0.95523	0.93259
72	12	36	32	5	13.154	5.03777	0.98481	0.95523	0.94072
72	12	36	33	5	16.1265	8.90669	0.99144	0.95523	0.94706
72	12	36	34	5	18.3347	11.9277	0.99619	0.95523	0.9516
72	12	36	35	5	19.6942	13.8475	0.99905	0.95523	0.95432

					4 POLOS				
S1	Q	Yc	Υ	G.Elec	a5%	a7%	Кр	Kd	Kw
24	2	6	3	30	-26.7949	26.7949	0.70711	0.96593	0.68301
24	2	6	4	30	-26.7949	-26.7949	0.86603	0.96593	0.83562
24	2	6	5	30	7.17968	-7.17968	0.96593	0.96593	0.93301
36	3	9	5	20	-27.8066	4.18891	0.76604	0.9598	0.73525
36	3	9	6	20	-22.6682	-18.4793	0.86603	0.9598	0.83121
36	3	9	7	20	-4.18891	-15.0644	0.93969	0.9598	0.90191
36	3	9	8	20	14.7956	6.41778	0.98481	0.9598	0.94521
48	4	12	8	15	-21.4413	-16.4525	0.86603	0.95766	0.82936
48	4	12	9	15	-8.88127	-16.4525	0.92338	0.95766	0.88476
48	4	12	10	15	5.74517	-4.40843	0.96593	0.95766	0.92503
48	4	12	11	15	17.1573	10.1021	0.99144	0.95766	0.94947
72	6	18	11	10	-25.08	-7.8395	0.81915	0.95614	0.78323
72	6	18	12	10	-20.6228	-15.1951	0.86603	0.95614	0.82804
72	6	18	13	10	-13.0516	-16.7022	0.90361	0.95614	0.86656
72	6	18	14	10	-3.81094	-12.3872	0.93969	0.95614	0.89848
72	6	18	15	10	5.52586	-4.07153	0.96593	0.95614	0.92356
72	6	18	16	10	13.4606	5.27722	0.98481	0.95614	0.94162
72	6	18	17	10	18.762	12.4947	0.99619	0.95614	0.9525

					6 POLOS				
S1	Q	Yc	Υ	G.Elec	a5%	a7%	Кр	Kd	Kw
36	2	6	3	30	-26.7949	26.7949	0.70711	0.96593	0.68301
36	2	6	4	30	-26.7949	-26.7949	0.86603	0.96593	0.83652
36	2	6	5	30	7.17968	-7.17968	0.96593	0.96593	0.93301
54	3	9	5	20	-27.8066	4.18891	0.76604	0.9598	0.73525
54	3	9	6	20	-22.6682	-18.4793	0.86603	0.9598	0.83121
54	3	9	7	20	-4.18891	-15.0644	0.93969	0.9598	0.90191
54	3	9	8	20	14.7956	6.41778	0.98481	0.9598	0.94521
72	4	12	7	15	-26.7949	-2.70684	0.79335	0.95766	0.75976
72	4	12	8	15	-21.4413	-16.4525	0.86603	0.95766	0.82936
72	4	12	9	15	-8.88127	-16.4525	0.92388	0.95766	0.88476
72	4	12	10	15	5.74517	-4.40843	0.96593	0.95766	0.92503
72	4	12	11	15	17.1573	10.1021	0.99144	0.95766	0.94947

					8 POLOS				
S1	Q	Yc	Υ	G.Elec	a 5%	a 7%	Kp	Kd	Kw
24	1	3	1	60	100	-100	0.5	1	0.5
24	1	3	2	60	-100	100	0.86603	1	0.86603
48	2	6	3	30	-26.7949	26.7949	0.70711	0.96593	0.68301
48	2	6	4	30	-26.7949	-26.7949	0.86603	0.96593	0.83562
48	2	6	5	30	7.17968	-7.17968	0.96593	0.9598	0.93301
72	3	9	5	20	-27.8066	4.18891	0.76604	0.9598	0.73525
72	3	9	6	20	-22.6682	-18.4793	0.86603	0.9598	0.83121
72	3	9	7	20	-4.18891	-15.0644	0.93969	0.9598	0.90191
72	3	12	10	20	6.07392	-4.9515	0.96593	0.9598	0.92709

TABLA DE LOS FACTORES DE BOBINADO PARA

BOBINADOS COMPLETO SOLAMENTE DE DOS CAPAS

FACTORES DE BOBINADO TRIFASICOS 2 POLOS

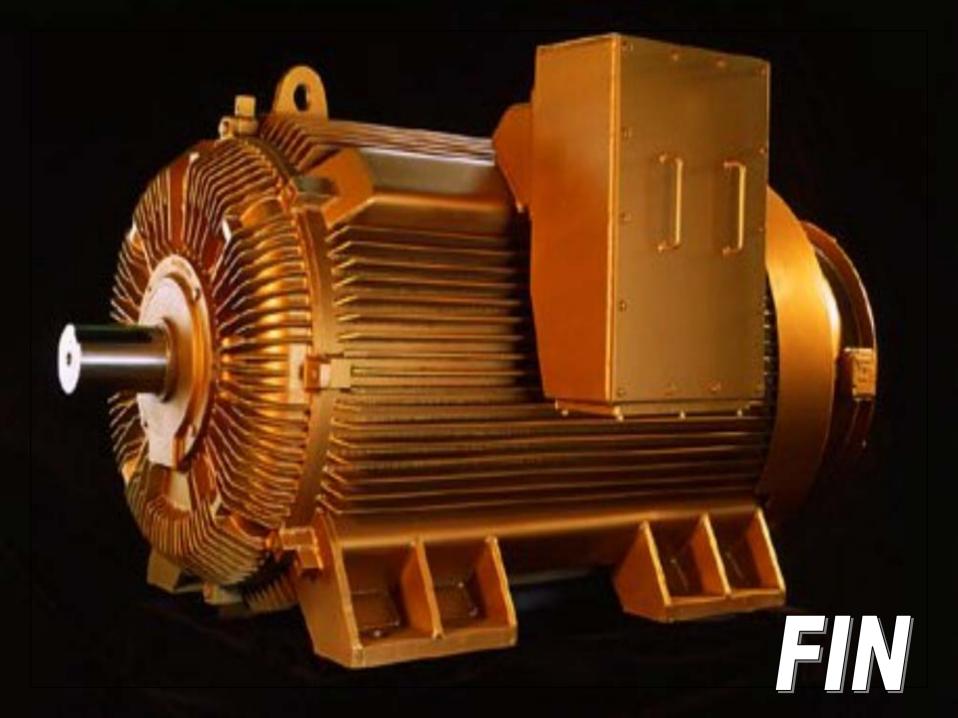
O III A O O O O O O O O O O O O O O O O											
Optimo	S1	q	Yc	Υ	G.elec.	a 5%	a 7%	Кр	Kd	Kw	
	24	4	12	7	15						
	24	4	12	8	15						
	24	4	12	9	15						
	24	4	12	10	15			0.9667	0.9577	0.925	
	24	4	12	11	15						
	30	5	15	10	12						
	30	5	15	11	12						
	30	5	15	12	12						
	30	5	15	13	12						
	30	5	15	14	12						
	36	6	18	13	10						
	36	6	18	14	10						
	36	6	18	15	10			0.9667	0.9561	0.924	
	36	6	18	16	10						
	36	6	18	17	10						
	48	8	24	16	7.5						
	48	8	24	17	7.5						
	48	8	24	18	7.5						
	48	8	24	19	7.5						
	48	8	24	20	7.5			0.9667	0.9556	0.923	
	48	8	24	21	7.5						
	48	8	24	22	7.5						
	48	8	24	23	7.5						
	72	12	36	28	5						
	72	12	36	29	5						
	72	12	36	30	5			0.9667	0.9552	0.923	
	72	12	36	31	5						
	72	12	36	32	5						
	72	12	36	33	5						
	72	12	36	34	5						
	72	12	36	35	5						

FACTORES DE BOBINADO TRIFASICOS 4 POLOS

optimo	S1	Q	Yc	Υ	G.elec.	a 5%	a 7%	Кр	Kd	Kw
	24	2	6	3	30					
	24	2	6	4	30					
	24	2	6	5	30			0.9667	0.9659	0.933
	36	3	9	5	20					
	36	3	9	6	20					
	36	3	9	7	20					
	36	3	9	8	20					
	48	4	12	8	15					
	48	4	12	9	15					
	48	4	12	10	15			0.9667	0.9576	0.925
	48	4	12	11	15					
	72	6	18	11	10					
	72	6	18	12	10					
	72	6	18	13	10			0.9667	0.9552	0.923
	72	6	18	14	10					
	72	6	18	15	10			0.9667	0.9561	0.924
	72	6	18	16	10					
	72	6	18	17	10					

FACTORES DE BOBINADOS TRIFASICOS 6 POLOS

optimo	S1	q	Yc	Υ	G.elec.	a 5%	a 7%	Кр	Kd	Kw
	36	2	6	3	30					
	36	2	6	4	30					
	36	2	6	5	30			0.967	0.966	0.933
	54	3	9	5	20					
	54	3	9	6	20					
	54	3	9	7	20					
	54	3	9	8	20					
	72	4	12	7	15					
	72	4	12	8	15					
	72	4	12	9	15					
	72	4	12	10	15			0.967	0.958	0.925
	72	4	12	11	15					


FACTORES DE BOBINADO TRIFASICOS 8 POLOS

optimo	S 1	q	Yc	Υ	G.elec.	a 5%	a 7%	Кр	Kd	Kw
	24	1	3	1	60					
	24	1	3	2	60					
	48	2	6	3	30					
	48	2	6	4	30					
	48	2	6	5	30			0.967	0.966	0.933
	72	3	9	5	20					
	72	3	9	6	20					
	72	3	9	7	20					
	72	3	9	8	20					

Notas:

- 1). El a2% es la amplitud de la segunda armonica en porcentaje de amplitud de la principal.
- 2). S1 es el numero de ranuras estatoricas.
- 3). Q es el numero de bobinas en serie por fase y polo.
- 4). Yc e Y son los pasos completo y recortado respectivamente.
- 5). G. Elec. Son los grados electricos de la ranura.
- 6). Kw y Kd son los factores de bobinado y distribucion respectivamente
- 7). Estas tablas no son validas para calcular bobinados de 1 capa y mixtos de 1 y 2 capas.

